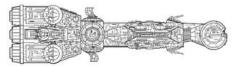
The International Space Station as an Innovation Laboratory

A REAL

esa

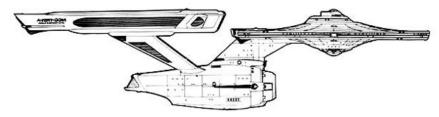
International Space Station Facts

Spacecraft Mass: ~925,000 lb (~419,000 kg) Spacecraft Pressurized Volume: 32,333 ft3 (915 m³) Velocity: 17,500 mph (28,200 kph) Altitude: ~220 miles above Earth Power: 80 kW continuous Science Capability: Laboratories built by US, Europe, Japan, and Russia Extended through *at least* 2020


Sizemodo: How big is the International Space Station?

20 m.

Colonial Viper Mk I: 8.7 meters


Interational Space Station: 107.4 meters

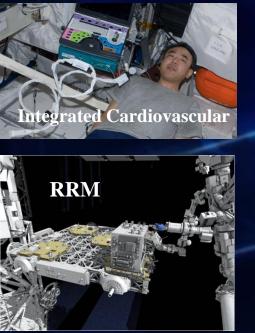
Corellian corvette: 150 meters

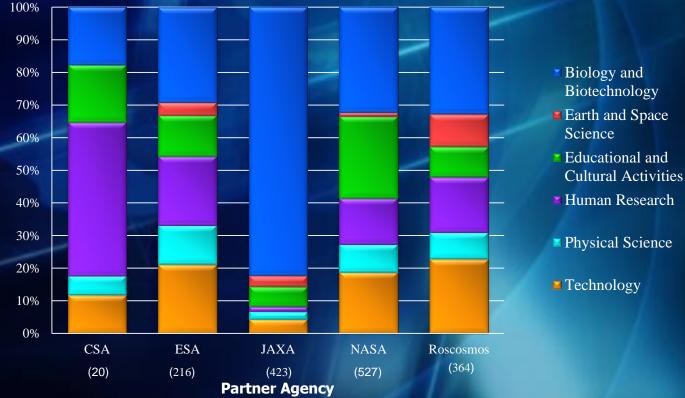
Module Length	51.0 m (167.3 ft)	
Truss Length	109.0 m (357.5 ft)	
Solar Array Length	73.0 m (239.4 ft)	
Mass	367,539 kg (810,285 lb)	
Habitable Volume	343 m ³ (12,118 ft ³)	
Pressurized Volume	892 m³ (31,510 ft³)	
USOS Power Generation	8 solar arrays = 84 kW	

Orbital Inclination / Path	51.6 degrees, covering 90% of the world's population
Altitude	200 nautical miles (on average) above the Earth

USS Enterprise (NCC-1701-A): 288.6 meters

Why do experiments in space?


ISS Research Accomplishments


(Expeditions 0 – 28, December 1998 – October 2012, working data as of March 2013)

- Expeditions 0 32
 - 1550 Investigations
 - 527 NASA-led investigations
 - 1023 International-led investigations
 - > 1500 scientists served
 - >600 scientific publications
 - 65 participating countries

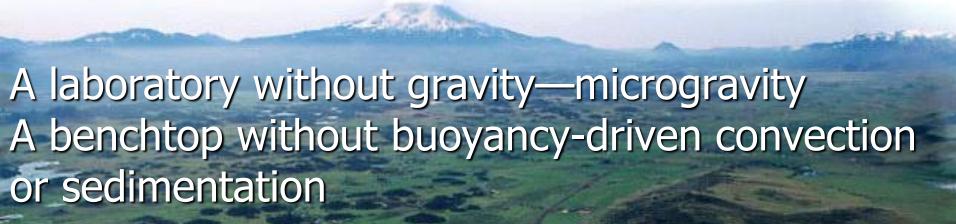
Research Disciplines of ISS Investigations By Partner Agency: Expeditions 0-32, December 1998 - October 2012

67 Countries Have Participated in ISS Utilization Argentina Kazakhstan

Australia Austria **Belarus Belgium** Bermuda Bolivia Brazil **Bulgaria** Canada Chile China Columbia Croatia **Czech Republic** Denmark **Dominican Republic** Ecuador Egypt Fiji Finland France Germany Ghana Greece Guatemala Hungary India Indonesia Ireland Israel Italy Japan

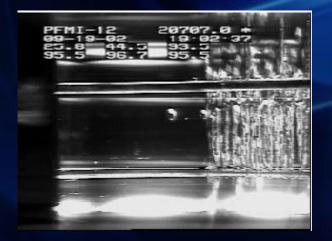
through 2012

Flags= ISS Partners

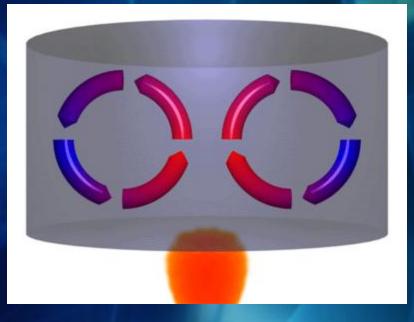

Kenya Kuwait Lebanon Luxembourg Macedonia Malaysia Mali Mexico **Netherlands New Zealand** Nigeria Norway Peru Poland Portugal **Republic of Korea** Romania Russia Senegal Slovenia Spain Sweden Switzerland Taiwan Thailand **Trinidad and Tobago** Turkey Ukraine **United Kingdom** Uruguay USA Venezuela 7

Vietnam

What are we doing on ISS today?

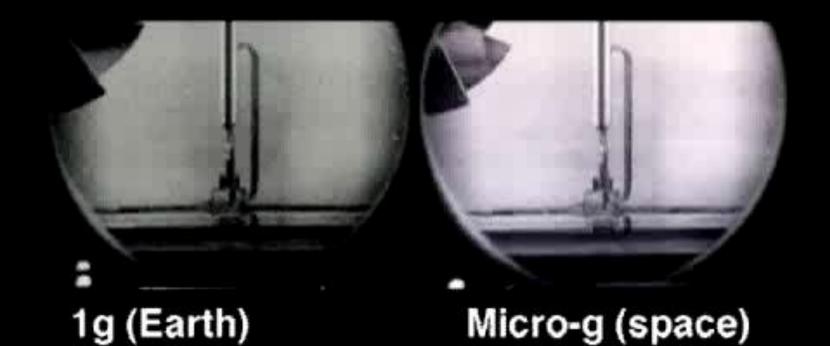


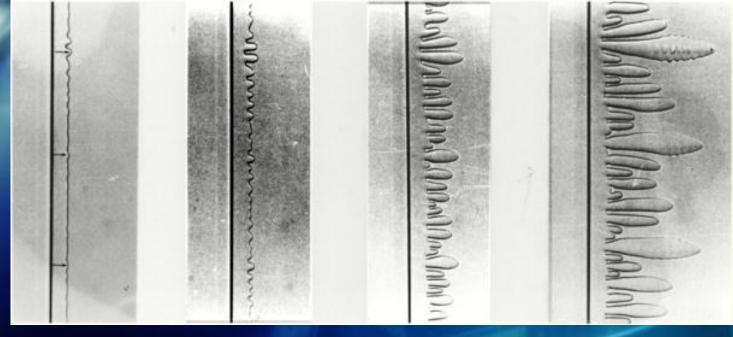
Both our mental models and our mathematical models of physical processes are compromised by gravity

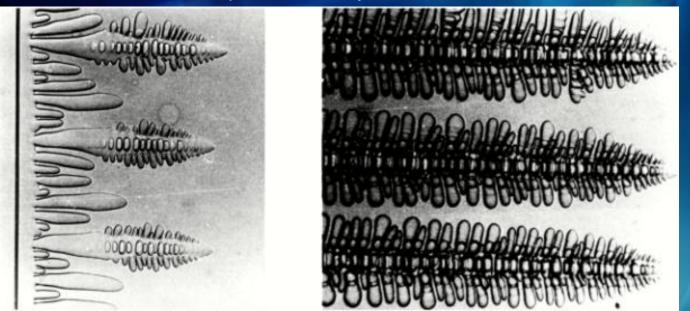

 Taking gravity out of the equation provides an innovation opportunity that is completely unique

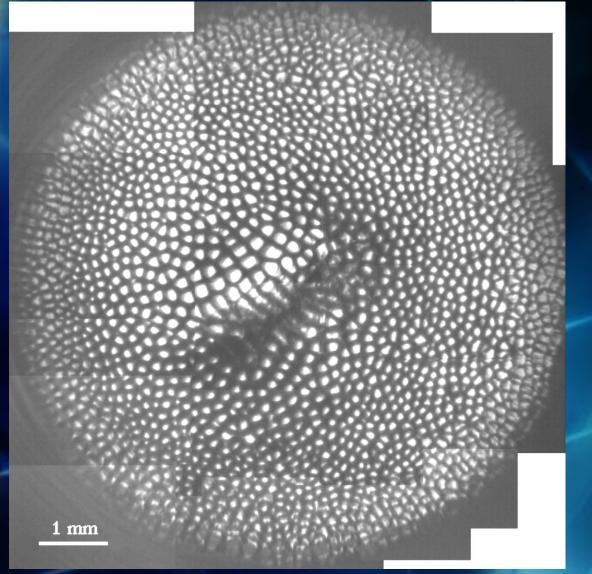
Physical Sciences: Convection

Combustion




Pore formation and Coarsening


Fluids: No density or buoyancy driven Convection!


Boiling on Earth and in Microgravity

Development of cells to deep cells to dendrites with time during the directional solidification of a transparent alloy in thin samples that give two-dimensional pattern evolution under diffusive growth conditions. -- *succinonitrile-camphor,* Courtesy of Rohit K. Trivedi, Iowa State University

Interface pattern evolution in three-dimension, observed in bulk samples that shows a very inhomogeneous pattern evolution due to the presence of fluid flow—convection on Earth disrupts the pattern and uniformity -- succinonitrile-camphor, Courtesy of Rohit K. Trivedi, Iowa State University

Testing in the Space Environment Materials International Space Station Experiment (MISSE)

Environmental threats include:

- Sun's radiation (ultraviolet (UV), x-rays)
- "Solar wind" particle radiation (electrons, protons)
- Thermal cycling (hot & cold cycles)
- Micrometeoroid & debris impacts (space particles)
- Atomic oxygen (single oxygen atom)

Three Detailed Examples

- Alloy casting
- Metallic glasses (amorphous metals)
- Semiconductor crystallization

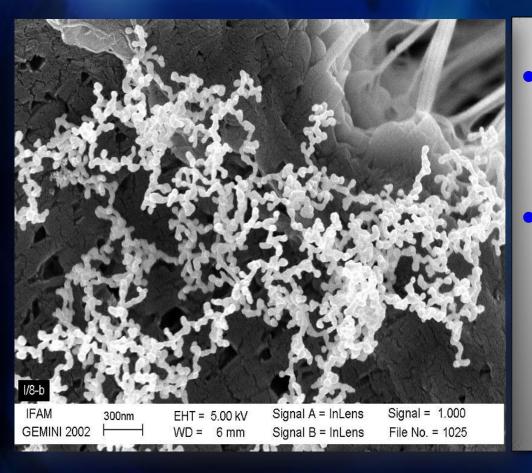
Removing Gravity

Parabolic Flights, seconds

Sounding Rockets, minutes

ISS, hours to days

Images courtesy of ESA


Project Objectives of IMPRESS (Intermetallic Materials Processing in Relation to Earth and Space Solidification)

Scientific: To understand critical links between the solidification processing of intermetallic alloys, the structure of the material at the micro- and nanoscale, and final mechanical, chemical and physical properties.

Technical: To develop, produce, and test novel intermetallic alloys for high quality 40cm-long investment cast and heat treated Ti-Al gas turbine blades for aero-engines and power generation turbines.

Industrial Partnership: Transvalor S.A., Alcan CRV, Arcelor Research S.A., CorusTechnology BV, Dunaferr Zrt., Femalk Rt., Honeywell International Technologies Ltd., Hydro Aluminium GmbH, MAL Magyar Aluminium Rt., Snecma - Safran S.A.

Titanium Aluminide Inter-metallics

- Remarkable mechanical and physical properties at temperatures of up to 800°C
- Ideal combination for high performance gas turbine blades:
 - High melting point
 - High-temperature strength and creep resistance
 - Low density

Top Ten IMPRESS Results for γ-TiAl Turbine Blades

- high-yield cost-effective net-shape casting processes (both centrifugal and tilt),
- 2. new high-temperature capable γ -TiAl alloys (viz. Ti46Al8Nb and Ti46Al8Ta),
- 3. patented heat treatment process for grain refinement of cast γ -TiAl material,
- 4. longer lasting yttria slurries and lower cost zirconia moulds,
- 5. multiple VAR ingots for large-scale industrial melting up to 1 tonne,
- **6.** novel recycling process for γ-TiAl casting scrap and out-of-service blades,
- multi-scale modelling capabilities for all turbine blade manufacturing steps, leading to a commercial software package developed by Calcom-ESI,
- thermodynamic and thermophysical property databases for Ti-Al-(Nb,Ta), aided by world-unique experiments in microgravity and using synchrotron X-rays,
- 9. first-ever mechanical property databases for both Ti46Al8Nb and Ti46Al8Ta,
- **10.** completion of an industrial life-cycle, cost-benefit and supply-chain analysis for γ TiAl

End-user aero-engine turbine application (Rolls-Royce)

Low pressure turbine blades from TiAl alloys produced by investment casting

More than 1 million LPT-blades to be manufactured over the next years

A320neo

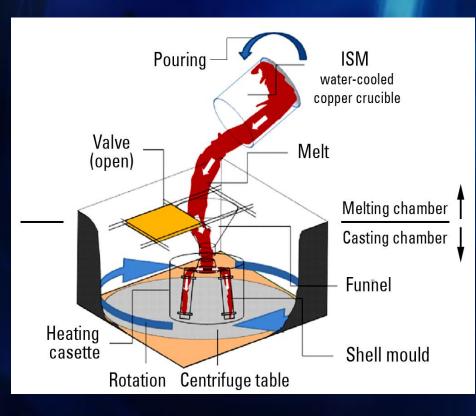
1420 orders and options from 18 airlines by December 2011 Possible engines: LEAP-1A and GTF PW1000G PurePower (versions A319neo, A320neo and A321neo; www.Airbus.com; January 2012)

Boeing 737 MAX

900 combined orders and options from 13 airlines by December 2011 Possible engine: LEAP-1B (versions 737-7, 737-8 und 737-9; Flug Revue 1/2012)

COMAC C919 900 orders by December 2011 Possible engine: LEAP-1C (Handelsblatt: "Deutsche Düsen nach China", Ausgabe 217 vom 9. November 2011, S.21)

Bombardier CSeries 110 orders and options by June 2011 Possible engine: GTF PW1100G PurePower (http://de.wikipedia.org/wiki/Bombardier_CSeries)


Courtesy of R. Gutlin, ACCESS, Martin Zell, ESA

Application example: casting and solidification of titanium aluminides

Application example: casting and solidification of titanium aluminides

Centrifugal investment casting of aero-engine parts from titanium aluminides

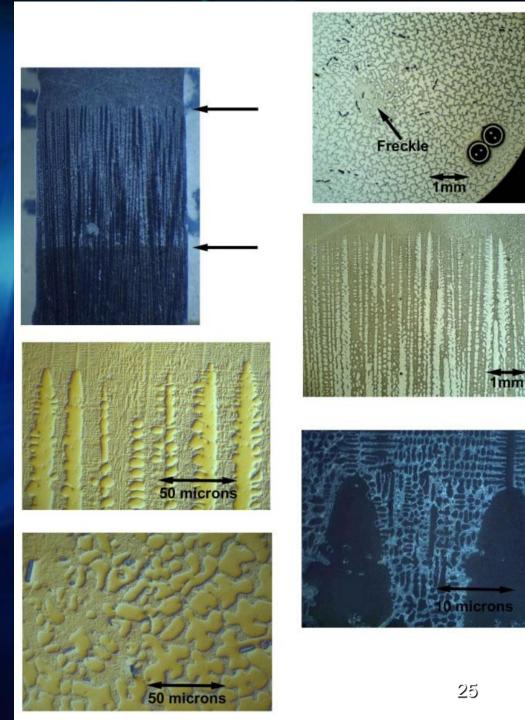
Process characteristics: acceleration forces ! Materials research in micro- and hypergravity conditions is expected to yield :

- thermophysical properties of the liquid
- fundamental knowledge about solidification
 - \rightarrow columnar-to-equiaxed transition (CET)
 - → effect of acceleration forces on CET
 - → validated models for casting simulation

Materials Science Research Rack (MSRR) and Materials Science Facilities on the ISS

PURPOSE

Provide a flight facility that supports research experiments to conduct material science and technology investigations in microgravity.

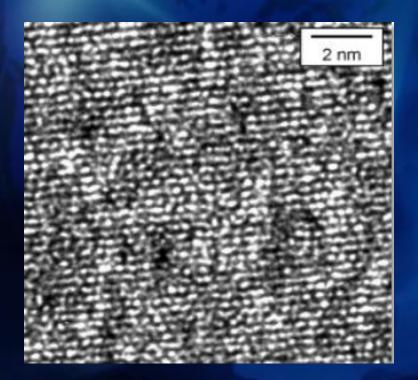

GOALS & OBJECTIVES

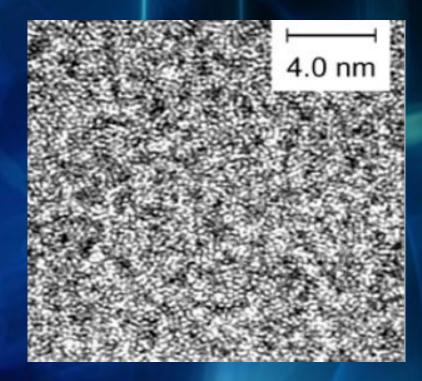
- Directional solidification of metal alloys different thermal profiles and magnetically-induced melt flow.
- Thermophysical properties of molten materials, in stable and in undercooled melts
 - surface tension, viscosity, heat capacity, enthalpy of fusion, thermal and electrical conductivity, emissivity, thermal expansion, and volume variations with melting

MICAST: Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically-Controlled Convective Conditions

- Defects in directionally solidified dendritic alloys result in production losses.
 - Misalignment of dendrite arms and macrosegregation
 - Uncontrolled convection.
- ISS research can enhance the mathematical modeling of solidification
- A specific objective is the simulation of solidification in castings of changing cross section.

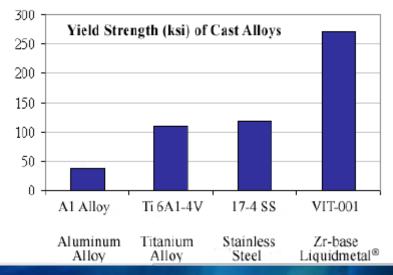
Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL)

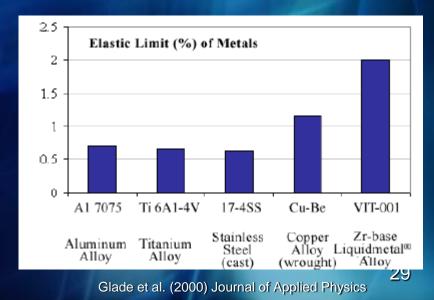

Growth patterns and evolution of microstructures during crystallization of metallic alloys.


Materials study options
Low-Gradient Furnace up to 1550 °C
Quenching Furnace
Electromagnetic Levitation up to 2400 °C
Electrostatic Levitation for metal oxides up to 2700 °C

The Care and a contract

Metallic Glasses


 High resolution TEM image of a crystalline zirconium alloy



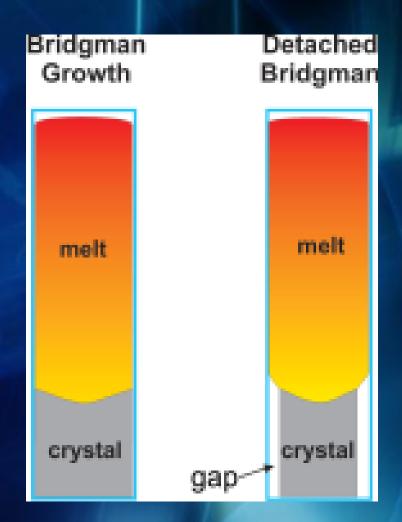
 High resolution TEM image of an amorphous zirconium alloy (metallic glass).

TEMPUS study in space containerless processing (1997 Shuttle Flight)

- First measurements of
- specific heat and thermal expansion of glass forming metallic alloys
- Measured the specific heat capacity of the undercooled and equilibrium liquid, heats of fusion, and other thermodynamic properties
- Capability to produce bulk metallic glasses on the ground was advanced.

Liquidmetal® alloys

- "Amorphous" atomic structure, in a bulk structural metals.
- Multi-component chemical compositions, which can be optimized for specific properties
- First commercially available metals with process technologies similar to plastics.
- In 2010, Apple purchased worldwide exclusive rights to use liquidmetal in its products , renewed through 2014—but not yet used in an obvious way



Iphone SIM ejector tool

Detached Bridgeman growth technique for semiconductor crystals

Detached Bridgman growth-where the crystallization occurs without contacting the crucible

- First found unexpectedly in crystal growth experiments of Indium Antimonide and Germanium on Apollo-Soyuz and Skylab
- Significant reduction in crystal defects was reported for those crystals.
- Didn't always work in space, considered a curiosity

Understanding from space experiments transferred back to Earth

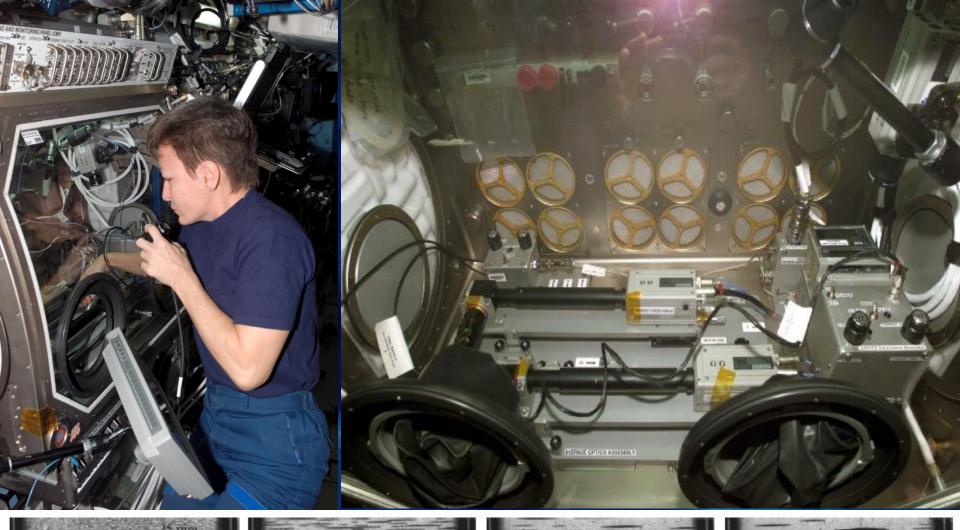
 Late 1990s focus on Germanium-Silicon crystals on Shuttle missions

Detached growth made possible on Earth for Ge, Ge-Si, Gallium Antimonide, and Cadmium Telluride

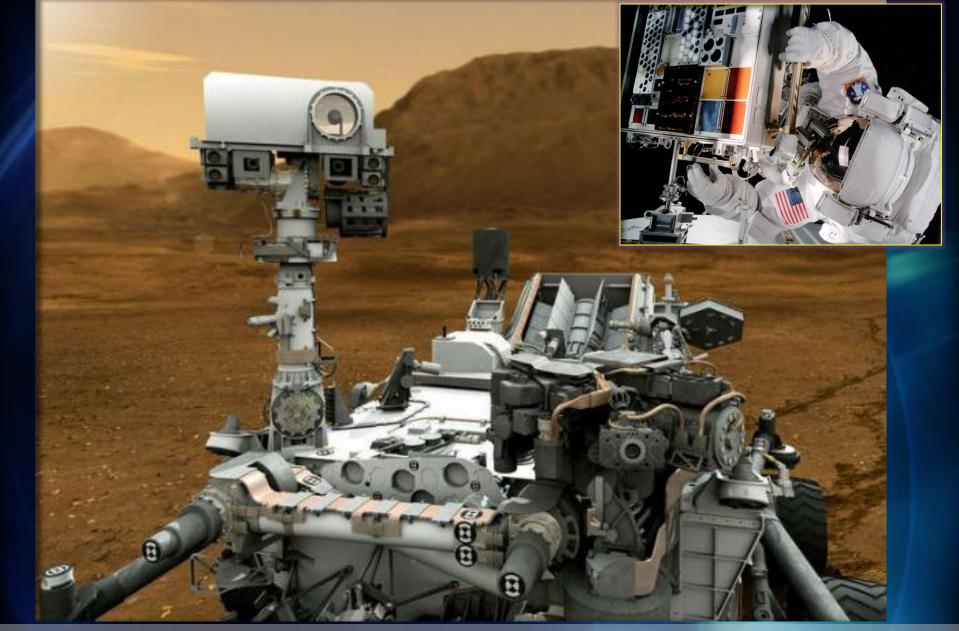
Etch pitch defects in Germanium crystals grown by detached Bridgman technique (left) and standard Bridgman (right)

Vhy ISS Now?

One year of space materials Research 1960-2011 (Uhran 2011)


Jnique results

SS is continuously available for to at least 2020, and beyond


nnovation opportunity

Metal Alloy processing – The reduced gravity on the *International Space Station* allows even distribution of particles in solid-liquid mixtures, thus providing a platform to understand the coarsening process in the development of metal alloys. Precipicalc, a code developed by a company named Questek, which is used to validate codes used in the computational design of material

Smart Materials – Studies on the *International Space Station* have investigated the internal structure of fluids that change properties in response to magnetic fields, without additional gravitational effects. Resulting technology has promise to improve the design of structures, such as buildings and bridges, to better withstand earthquakes. **Supercritical Fluids** - The **Binary Colloidal Alloy Test (BCAT)** suite of studies conducted by Harvard University on the *International Space Station* have investigated liquid/gas phase separation changes in microgravity. Results may lead to improvements in supercritical fluids used in rocket propellants, biotechnology applications, and advancements in fiber-optics technology.

A coating that survived long-term exposure on the ISS as part of the MISSE investigation is now protecting the Mars Curiosity Rover's critical power unit from static electricity as it collects data on Mars.

Transfer of Knowledge

Support and accelerate the transfer of knowledge generated by research in space into industrial processes or products

- Research in space production of benchmark data most useful if supported by a large body of ground based research
- Performing space experiments as part of industrial R&D projects is an effective way of providing industry with knowledge acquired in space

How to Get New Research Onto ISS ▲ A 5-Phase Template ► Summary

PHASE 1: S	PONSORSHIP
------------	------------

Funding Sources

Points of Contact

PHASE 2: STRATEGIC PLANNING

PHASE 3: TACTICAL PLANNING

PHASE 4: OPERATIONS

PHASE 5: POST-FLIGHT

PHASE 1: SPONSORSHIP Funding Sources

For more information on research sponsorship and funding, see: <u>http://www.nasa.gov/mission_pages/station/research/funding_in</u> <u>rmation.html</u>

(a) NASA Research

Grant opportunities and information in NASA Solicitation and Proposal Integrated Review and Evaluation System (NSPIRES) at

http://nspires.nasaprs.com/extern al/

(b) National Laboratory Research / The Center for the Advancement of Space in Science (CASIS)

The 2005 NASA Authorization Act designated the U.S segment of the space station as a national laboratory, enabling access by other Federal agencies, non-profits, and the private sector. Opportunities and information in CASIS' website at *http://www.iss-casis.org/*

(c) Educational Activities

Both NASA Education and CASIS offer education opportunities and information at NASA: *http://www.nasa.gov/mission_pag es/station/research/research_teac her. html* and at CASIS: *http://www.isscasis.org/research.php*

(d) International Partner Research

International investigators should seek sponsorship through their appropriate space agency.

(Acronym list on last page of this presentation)

PHASE 1: SPONSORSHIP Points of Contact

Sponsoring Organization (Funding Source)	Selecting Organization	ISS Integration Contact
NASA Life and Physical Sciences - Human Research Program (NASA-funded)	NASA: William Paloski	Cindy Haven, NASA/JSC
NASA Life and Physical Sciences - Physical Science <i>(NASA- funded)</i> - Space Biology <i>(NASA- funded)</i>	NASA: Marshall Porterfield	Sharon Conover, NASA/JSC
Astrophysics, Heliophysics, Space & Earth Sciences <i>(NASA- funded)</i>	NASA: Paul Hertz / Selecting Division Director	Sharon Conover, NASA/JSC
Technology Demonstration (NASA-funded)	 NASA Space Technology Mission Directorate: Michael Gazarik NASA Advanced Exploration Systems: Jason Crusan 	George Nelson, NASA/JSC
ISS National Laboratory <i>(Other government agency funded, non-profit / commercially funded)</i>	The Center for the Advancement of Space in Science (CASIS)	Michael Read, NASA/JSC
Education	CASIS ISS Education: John NeubauerNASA ISS Education: Jane Gensler	 Michael Read, NASA/JSC Sharon Conover, NASA/JSC

What kind of benefits come from research in space?

Discovery

Research Benefits Earth Benefits

Space Exploration

Spinoffs

Julie A. Robinson, ISS Program Scientist

Examples of Major ISS Benefits from the Decade of Assembly

Discoveries

- MAXI black hole swallowing star (*Nature*)
- Vision impacts and intracranial pressure (*Opthalmology*)
- Microbial virulence (*Proc. Nat. Acad. Sci.*)
- Results with potential Earth benefit
 - Candidate vaccines for Salmonella and MRSA
 - Candidate treatment for prostate cancer
 - Candidate treatment for
 - 43 Duschenne's muscular dystrophy

- NASA Exploration Mission
 - Life support sustaining and reliability
 - Success in bone health maintenance resistive exercise (*J. Bone Mineral Res.*)
 - Models for Atomic Oxygen erosion in orbit
- Technology Spinoffs
 - Robotic assist for brain surgery
 - TiO2 for filtering bacteria from the air in daycares
 - Remotely-guided ultrasound for maternal care in remote areas

ISS Research & Technology http://www.nasa.gov/iss-science/

@ISS_Research

ISS Research Blog "A Lab Aloft" http://go.usa.gov/atI